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Abstract. In recent years, generative AI chatbots have significantly improved in
their ability to simulate human-like conversations. However, ensuring the accu-
racy and contextual relevance of their responses remains a challenge. This paper
presents an innovative approach to enhancing the accuracy of generative AI chat-
bots by integrating knowledge graphs using Neo4j. We demonstrate how combin-
ing structured data fromKnowledge Graphs with advanced large language models
can result inmore accurate and context-aware chatbot interactions. By implement-
ing this approach, we aim to provide a robust framework for developing intelli-
gent chatbots that can deliver precise and contextually appropriate responses. We
created three categories of test cases: Data-Relevant Inquiries, Non-Contextual
Queries, and Contextually Relevant but Data-Irrelevant Questions. The accuracy
obtained for the data-relevant test cases was 91.44%.

Keywords: Retrieval and Augmented Generation (RAG) · Large Language
Model (LLM) · Knowledge graphs · Chatbot · Generative AI ·Word
embeddings · Vector index · Cypher · Similarity search · Neo4j

1 Introduction

Generative AI refers to artificial intelligence systems that can create new content or
data. Unlike traditional AI models, which primarily classify or predict outcomes based
on existing data, generative AI models can generate text, images, music, and even com-
plex designs from scratch [1]. Most generative AI models are built using deep learning
techniques, particularly neural networks like Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), and Transformers.

A chatbot is a software application designed to simulate human conversation through
text or voice interactions [6, 22]. Chatbots can be rule-based, following predefined
scripts, or more advanced AI-powered, utilizing AI to understand and respond to user
inputs dynamically. Rule-based chatbots operate based on a set of predefined rules. They
can handle simple queries but struggle with more complex conversations. Whereas,
AI-powered chatbots use natural language processing (NLP) and machine learning to
understand and respond to user inputs more agility. They can learn from interactions
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and improve over time [7]. Customer support, personal assistants, and e-commerce are
a few applications.

Rule-based chatbots provide responses based on a fixed set of predefined options,
typically using if-then logic or decision trees. They struggle with limited flexibility.
Whereas, Generative AI chatbots use machine learning models, such as GPT (Genera-
tive Pre-trained Transformer), to generate responses on the fly. They understand context
[26] and generate natural language responses providing high flexibility. Rule-based chat-
bots rely on keyword matching and pattern recognition to understand [26] user input.
They lack awareness over complex phrasings and their interactions look artificial [2].
Generative AI chatbots use advanced NLP techniques to understand and interpret user
input. They interact in a natural and coherent way. The knowledge and capabilities of
rule-based chatbots are fixed and must be manually updated. They do not learn from
interactions. They cannot improve their performance over time without human inter-
vention. Any updates or improvements require reprogramming. Generative AI chatbots
can learn from new data and interactions. They can be fine-tuned and updated with new
information, improving their performance and accuracy. They can adapt to new types
of queries and improve their responses based on user feedback and additional training
data. One such adaptation is Retrieval Augmented Generation (RAG) [6]. RAG is an
advanced NLP technique that combines the strengths of retrieval-based and generative
models. It improves the accuracy and contextual relevance of generated responses by
incorporating external knowledge through a retrieval component. RAG offers numerous
advantages, including enhanced accuracy, better contextual understanding, scalability,
flexibility, reduced hallucination, and efficient information retrieval [7]. These benefits
make RAG a powerful tool for various applications, such as customer support, research
assistance, content creation, and question-answering systems.

In this paper, we aimed to improve the accuracy by creating three different test cat-
egories namely three different test categories namely: Data-Relevant, which focuses on
known data; Non-Contextual, which deals with out-of-context data; and Contextually
Relevant but Data-Irrelevant, based on contextual data but previously not encountered
by the chatbot. The remainder of the paper is organized as follows. Section 2 describes
related work on chatbots, RAG, and knowledge graphs. Section 3 discusses the imple-
mentation of the chatbot, detailing the tools, technologies, and steps involved. Section 4
presents the results and evaluation. Section 5 provides research conclusions.

2 Related Work

Bandi and Kagitha in their article [2] presented the different phases of generative AI
project life cycle with the implementation of chatbot using generative AI LLMs. While
we used those different phases of generative AI project, we observed that there are
limitations in the evaluating the responses of the chatbot. They have tested only on the
contextually relevant data and their test cases are completely based on the trained data
able to get one hundred percent accurate results. The same article did not address if the
prompts are not relevant to the trained data and the results for such prompts from the
chatbot can’t be predicted.

LLMs are empowered with Retrieval Augmented Generation (RAG) [4] in enabling
them to deliver correct and contextual answers. Particularly in the space of open-domain
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question answering [5], educational question-answering system [9], adaptable AI assis-
tant for networkmanagement [15], medical consultation chatbot [3, 17]. RAGmodel has
its own applications, methodologies and their effectiveness, techniques and challenges
[6, 7]. LLMs utilising RAG have a proven ability in extracting relations from the text
and corresponding models were proven effective [8].

These RAG enabled Chatbots when enhanced with Knowledge-Graphs [10, 18, 20]
can improve customer service question answering [11]. LLMs are capable of performing
generative graph analytics, focusing on query processing, learning [12]. Mainly, Also
there are other approaches such as hybrid context retrieval-augmented generation, that
combines knowledge graphs and vector databases [13], graph-based retrieval-augmented
generation approach for query-focused summarization [16].

There is an inadvertent need to integrate large languagemodels with vector databases
[14].Neo4j [24, 25] comeswith the combination ofKnowledge graphs andVector indices
[19]. These vector indices are built based on word embeddings [21].

Our research focuses on increasing the accuracy of Chatbot by implementing a
Knowledge-Graph enabled RAG combined with vector indices by considering all the
types of data such as relevant, irrelevant, contextually relevant but data irrelevant. We
developed a chatbot for the MSACS program at Northwest Missouri State University,
which constructs knowledge graphs and vector indices using data available on NWMSU
websites related to courses, professors, schedules, and more. This chatbot utilizes RAG
to provide responses to student prompts or queries.

3 Chatbot Implementation

This section presents the details of the chatbot implementation. We developed a chatbot
for prospective students of theMaster of Science inAppliedComputer Science (MSACS)
program. This AI-powered chatbot assists prospective and current students in obtaining
information using the following tools and technologies.

3.1 Tools and Technologies

– Python: The primary programming language used to develop the chatbot
– Neo4j: A graph database that aids in constructing andmanaging the knowledge graph,

with efficient storage and retrieval of entities and relationships within the MSACS
program data.

– LangChain: LangChain is an open-source framework designed to aid developers in
creating applications that utilize large language models (LLMs) for natural language
processing (NLP). It offers a variety of tools, components, and interfaces that stream-
line the development process and facilitate the integration of language models with
external data sources such as Neo4j.

– OpenAI GPT-3.5-Turbo-0125 LLM: OpenAI GPT-3.5-Turbo-0125 is an advanced
version of the GPT-3 model, designed to be faster and more efficient. The “0125”
indicates specific enhancements and adjustments in this version. It can handle a variety
of language-related tasks, such as generating text, translating languages, summarizing
content, and question-answering chats.

– Tiktoken: Library used for tokenizing the text.



160 A. Bandi et al.

Fig. 1. Architecture of chatbot

3.2 Methodology

This section details the different steps in implementing the MSACS chatbot. Figure 1
represents the high-level architecture of the chatbot, illustrating how different compo-
nents interact and integrate with each other, providing an easier understanding of the
overall system layout and data flow. We implemented our chatbot by adopting practical
guide to constructing and retrieving information from knowledge graphs in RAG appli-
cations with Neo4j and LangChain by Tomaz Bratanic [26]. Figure 2 shows the sequence
diagram, which demonstrates the dynamic behavior of the system with different actors,
visualizing interactions between components and representing the system behavior over
time. All the files related to the implementation of the paper are provided in the GitHub
repo.1

1. Extract data from the Html pages: Using data from MSACS websites, WebBase
Loaders of LangChain fetch and load the content of multiple web pages. This content
is stored in a buffer for further processing.

2. Split the data into chunks: Tokenizing data is essential for effectively leveraging large
language models. It transforms raw text into a structured and standardized format
that the model can process efficiently. By capturing semantic meaning, reducing
complexity, and enabling efficient computation, tokenization plays a fundamental
role in the performance and capabilities of LLMs. Using TikToken, the buffered data
is split into chunks of 512 tokens with an overlap of 24 tokens. The overlap ensures
that contextual relevance is maintained across the tokenized data. This step facilitates
breaking down the content into more digestible parts while preserving context.

1 https://github.com/bandiajay/Enhancing-Generative-AI-Chatbot-Accuracy-Using-Knowle
dge-Graph.

https://github.com/bandiajay/Enhancing-Generative-AI-Chatbot-Accuracy-Using-Knowledge-Graph
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Fig. 2. Interactions of chatbot’s components in sequence diagram

3. Transform the Data into Knowledge Graphs Using LLMs and Store in Neo4j
Database:We use the gpt-3.5-turbo-0125 LLM to implement the chatbot. By control-
ling the randomness of the model’s responses, ensuring deterministic and consistent
outputs. The tokenized data from the previous step is transformed into a graph-based
format, known as a Knowledge Graph, as shown in Fig. 3. This aids in advanced doc-
ument analysis, enhanced querying of textual data, and knowledge extraction using
a graph transformer called LLM- GraphTransformer. The nodes in the graph con-
tain primary entity information, and the original source of each document is retained
within the graph, enhancing traceability and context preservation. This transformation
is crucial for complex document analysis tasks, enabling more sophisticated knowl-
edge extraction and representation. The entire pipeline—from loading and splitting
documents to transforming them into graph documents—is designed to enhance the
processing and analysis capabilities of textual data.

Fig. 3. Knowledge Graph of MSACS program courses
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4 Create Vector Indices on Knowledge Graphs and Store Word Embed- dings: Vec-
tor indices enable rapid and scalable search and retrieval operations, and they help
manage high-dimensional data, optimizing performance and enabling sophisticated
data-driven solutions. A vector index is created from the existing graph developed in
the previous step. OpenAI’s embedding model is used to convert the data into vec-
tor representations. The search types are hybrid, effectively using both vector-based
searchmethods like cosine similarity and traditional searchmethods. Full-text indices
in Neo4j are also utilized for efficient text searches, enhancing query performance
and enabling advanced search capabilities.

5. Give a Prompt: A prompt is provided, which may or may not be related to the
extracted data. The LLM should respond with contextual knowledge derived from
the previously developed knowledge graphs.

6. Retrieve Structured Context from Neo4j Using Knowledge Graphs: The structured
retriever operates on the knowledge graph, extracting specific entities such as courses,
professors, requirements, and projects using prompt-based entity extraction. For each
extracted entity, it constructs a full-text search query and retrieves relevant nodes
and their relationships from the Neo4j graph database, including both outgoing and
incoming relationships. The results are formatted into a structured output.

7. RetrieveUnstructuredContext fromNeo4jUsingSimilarity Search onVector Embed-
dings: The unstructured retriever performs a similarity search on the vector indices
using the prompt. This search aims to provide flexible, content-based retrieval without
focusing on predefined entity types or relationships.

8. AugmentBothContexts andProvide toLLM:The structured and unstructured retriev-
ers extract and query entities related to the user’s prompt, collecting their neighbor-
hood in the graph database to create a single context. This augmented context is then
passed to the LLM.

9. Get the Response from LLM: A template is created with the user’s question and the
RAG’s context, forming a coherent prompt. The LLM then responds to this prompt.

4 Results and Evaluation

The chatbot’s accuracy is evaluated based on the following three categories of test cases:

1. Data-Relevant Inquiries: These are questions directly related to the specific data
provided. The chatbot needs to accurately retrieve and respond to queries based on
the information it has been trained on or has access to within the dataset.
Example: “Is a score of 105 in Duolingo sufficient for admission?” This question
requires the chatbot to reference the admissions criteria data for Duolingo scores.

2. Non-Contextual Queries: These are questions that are not related to the context
of the data provided. Such queries are outside the scope of the chatbot’s intended
knowledge base, and it should ideally recognize these and handle them appropriately,
potentially by stating that the information is not available.
Example: “Does the sun rise in the east?” This question is a general knowledge
inquiry and not relevant to the specific dataset or context the chatbot is designed to
address.
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3. Contextually Relevant but Data-Irrelevant Questions: These questions are within
the broader context, but are not specifically covered by the data the chatbot has. The
chatbot should be able to recognize the context and acknowledge the relevance, yet
correctly indicate that the specific data point is not available.
Example: “How long does it take to commute from campus to downtown during
rush hour?” This question is relevant to someone considering the practical aspects
of attending the institution, but it falls outside the scope of the chatbot’s knowledge
on admissions criteria. The chatbot should acknowledge the relevance of commuting
concerns, but state that it doesn’t have specific data regarding commuting times.

By organizing the test cases in this way, we can thoroughly assess how well the
chatbot handles different types of questions. This helps us gauge its strength in under-
standing and responding appropriately across various contexts. We’ve prepared a set
of 1000 test cases using generative AI based on the following prompt. The test cases
are designed to mimic the types of prompts the chatbot would encounter in real-life
scenarios. To create a balanced dataset, we included an equal mix of 50% true prompts
and 50% false prompts. The goal of using true/false format questions is to construct a
confusion matrix. After inputting these prompts into the chatbot, we manually review
the results to classify them as true positives (TP), false positives (FP), true negatives
(TN), or false negatives (FN). This manual validation allows us to accurately calculate
the confusion matrix values.

Precision:

P = TP

TP + FP

Accuracy:

Acc = TP + TN

TP + TN + FP + FN

Recall:

R = TP

TP + FN

Using the website URLs from the MSACS website, generate 1000 test cases, with
nearly 330 each in all three categories such that the test case is similar to the prompt
and the answer is always either True or False. 1. Questions relevant to the above data
2. Questions that are not in context to the data 3. Questions that are in context, but not
related to the above data.

Each of these categories represents different types of questions the chatbot may
encounter in real-world scenarios. To evaluate its performance, we used metrics such
as precision, accuracy, and recall, which are crucial for assessing how effectively the
chatbot handles various contexts. Table 1 presents the confusion matrix, which shows
the number of true positives, false positives, true negatives, and false negatives for each
category of test cases. Table 2 provides the final precision, accuracy, and recall values
for all three categories of test cases.
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In theData-Relevant Inquiries group, the chatbot excelledwith a precision of 95.33%,
an accuracy of 91.45%, and a recall of 91.48%. These impressive metrics highlight the
chatbot’s effectiveness in dealing with straightforward questions directly related to the
provided data. The high precision means that the chatbot’s responses are mostly relevant
and accurate, ensuring users get the correct information. The high recall indicates that the
chatbot successfully retrieves a significant portionof relevant information, demonstrating
its thoroughness. The accuracy score reflects the overall correctness of the chatbot’s
responses in this category, showing its reliabilitywhen answeringdata-specific questions.

By categorizing the test cases this way, we can comprehensively evaluate the chat-
bot’s ability to understand and respond accurately across different types of inquiries.
This approach helps us measure its robustness and contextual understanding in a vari-
ety of scenarios. We prepared a total of 1000 test cases using these criteria to ensure a
thorough assessment. The Non-Contextual Queries group posed a significant challenge
for the chatbot. While the precision was notably high at 98.92%, indicating that the
chatbot correctly identified irrelevant queries with great accuracy, the recall dropped
significantly to 54.12%. This means that the chatbot failed to identify nearly half of the
irrelevant instances, missing a substantial number of them. This insight suggests that
while the chatbot broadly classified positive and negative irrelevant queries correctly, it
struggled to catch all irrelevant queries. The overall accuracy was 76.76%, showing that
the chatbot could correctly identify a substantial proportion of instances, but still missed
a significant number of relevant responses. This discrepancy indicates that although the
chatbot performed well in recognizing true positives (correctly identifying irrelevant
queries), it had difficulty in identifying all irrelevant responses, especially when the con-
text of the queries did not match the available data. This performance gap highlights the
need for improvements in the chatbot’s ability to understand and classify non-contextual
queries, ensuring it can better distinguish between relevant and irrelevant questions in
various contexts.

Table 1. Confusion Matrix

Predicted

Category I Category II Category III

Actual positive 204 (TP) 19 (FN) 92 (TP) 78 (FN) 82 (TP) 141 (FN)

Actual negative 10 (FP) 106 (TN) 1 (FP) 169 (TN) 4 (FP) 104 (TN)

In the Contextually Relevant but Data-Irrelevant Questions group, the chatbot faced
moderate difficulty. Themain reason for it isHallucination.Hallucination in the context
of languagemodels refers to the generation of text that is plausible-sounding but factually
incorrect or nonsensical. GPT-3.5-Turbo-0125, like other large language models, can
sometimes produce information that is fabricated or not grounded in its training data. It
achieved a precision of 95.35%, indicating thatwhen the chatbotmade a prediction, itwas
highly likely to be correct. However, the recall dropped significantly to 36.77%, revealing
that a large number of relevant responses were not retrieved by the chatbot. The overall
accuracy was relatively low at 56.19%, suggesting that many of the chatbot’s predictions
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Table 2. Performance metrics for different categories of test cases

Data-relevant Non-contextual Contextually relevant
but data-irrelevant

Overall

Precision 95.327 98.93 95.348 97.512

Accuracy 91.445 76.76 56.193 75.698

Recall 91.479 54.12 36.771 61.583

were incorrect when considered in total. These performance metrics reflect the inherent
challenge of dealing with questions that are contextually relevant but lack specific data
within the chatbot’s training set. This situation hampers the chatbot’s ability to provide
accurate and comprehensive responses. The lower recall and accuracy in this category
underscore the difficulty the chatbot encounters when it needs to navigate incomplete or
missing contextual data. This highlights the need for the chatbot to improve its ability to
recognize and handle questions that are relevant to the context but fall outside the scope
of its available data, ensuring it can better serve users with accurate information even
when specific details are not directly available.

Overall, the chatbot’s performance across all test cases was quite strong. For the
data-relevant inquiries, an average precision of 95.32%, accuracy of 91.44%, and recall
of 91.49%. These numbers show that the chatbot is performance is good at identify-
ing relevant information when it’s there, meaning its answers are generally reliable.
However, there’s room for improvement, especially in how it handles tricky questions.
For instance, when it comes to Non-Contextual Queries and Contextually Relevant but
Data-Irrelevant questions, the chatbot’s recall is much lower. This means it often misses
relevant information in these harder scenarios, even though it does well when it does
make a prediction. The high precision shows that the chatbot’s responses are accurate
when it decides to answer, but the lower recall indicates it doesn’t always catch every-
thing it should. To make the chatbot even better, we need to focus on helping it deal
with questions that are outside its usual scope or where the context is not clear. Moving
forward, we should work on enhancing the chatbot’s ability to understand and respond
to a wider range of questions, particularly those that are more complex or less directly
related to its data. This will help improve its recall and overall accuracy, making it more
effective and reliable for users in all kinds of situations.

5 Conclusion

In conclusion, our methodology demonstrated significant progress in addressing the
common limitations of LLMs, such as hallucinations, while retaining the benefits of a
Graph-RAG. The chatbot performed well with data-relevant queries, showing a strong
precision of precision of 95.32%, accuracy of 91.44%, and recall of 91.49%. However, it
faced challenges with non-contextual queries and those that were contextually relevant
but data-irrelevant, as evidenced by a lower recall of 61.58%. Improving the chatbot’s
ability to understand and manage context will be crucial for enhancing its performance
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in these more complex scenarios. By refining the algorithms to better handle these types
of queries, we can boost both recall and overall accuracy, making the chatbot more
effective and reliable. Our research establishes a promising framework for developing
intelligent chatbots that leverage the strengths of Generative AI and Knowledge Graphs.
This combination paves the way for creating more accurate, efficient, and reliable AI-
driven communication tools. Such advancements have broad applications across various
fields, including education and customer service, promising to revolutionize how we
interact with AI in many aspects of our daily lives.
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